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We employ Raman spectroscopy to diagnose benign and malignant
lesions in human breast tissue based on chemical composition. In
this study, 130 Raman spectra are acquired from ex vivo samples of
human breast tissue (normal, fibrocystic change, fibroadenoma,
and infiltrating carcinoma) from 58 patients. Data are fit by using
a linear combination model in which nine basis spectra represent
the morphologic and chemical features of breast tissue. The re-
sulting fit coefficients provide insight into the chemical�morpho-
logical makeup of the tissue and are used to develop diagnostic
algorithms. The fit coefficients for fat and collagen are the key
parameters in the resulting diagnostic algorithm, which classifies
samples according to their specific pathological diagnoses, attain-
ing 94% sensitivity and 96% specificity for distinguishing cancer-
ous tissues from normal and benign tissues. The excellent results
demonstrate that Raman spectroscopy has the potential to be
applied in vivo to accurately classify breast lesions, thereby reduc-
ing the number of excisional breast biopsies that are performed.

spectral diagnosis � optical vibrational disease

In the United States, �216,000 new cases of breast cancer are
diagnosed each year, and 40,000 women die from the disease

(1). Mammography, the most common technique for detecting
nonpalpable, highly curable breast cancer, employs x-rays to
quantitatively probe density changes in breast tissue. Because
these density changes are not uniquely correlated with breast
cancer, mammography serves as a screening technique rather
than a diagnostic tool. Thus, a lesion found through either
clinical breast examination or mammography is always biopsied.
Because of current limitations, 70–90% of mammographically
detected lesions are found to be benign upon biopsy (2). Breast
biopsy is most often performed by surgical excision that removes
the entire lesion or by core needle biopsy that removes 5–12
cores of tissue, typically 1 mm in diameter and several centime-
ters long, to ensure proper sampling (3). The complete diagnos-
tic process, from start to finish, may take months and may
include multiple biopsies.

A desire to reduce the number of biopsies performed on
benign tissue and the patient trauma, time delay, and high
medical costs involved has motivated researchers to explore a
variety of minimally invasive optical imaging and spectroscopy
techniques to improve breast cancer diagnosis, especially the
ability to distinguish benign lesions from malignant ones. These
techniques employ visible or near-infrared light, have the po-
tential to provide chemical information, and are less invasive
than current diagnostic procedures.

Diffuse optical tomography (DOT) studies the propagation of
amplitude-modulated pulses of light through the breast. It is
noninvasive and can detect lesions deep within the tissue (4–8).
An array of sources and detectors in a measurement cup enables
3D images to be constructed. By using light of different wave-
lengths, information about scattering and absorption can be
extracted to measure oxy- and deoxy-hemoglobin concentrations
and the presence of lipids. However, DOT can detect only a
limited number of chemicals and is generally of low resolution,

causing small lesions to go undetected. Furthermore, to obtain
the sensitivity and specificity required for lesion detection
in vivo, exogenous agents are often used to improve contrast (9).

Optical spectroscopic techniques are also under investigation
for breast cancer diagnosis. Unlike DOT, these techniques
sample the tissue locally (�1 mm3 volume). Light delivery and
collection can be accomplished by using optical fibers that can
be incorporated into a biopsy needle. As opposed to biopsy, a
spectroscopic needle measurement has the advantage of pro-
viding immediate diagnosis. Thus, spectroscopy has the potential
to reduce both the likelihood of a nondiagnostic needle biopsy
(requiring repeat needle or surgical biopsy) and patient anxiety
(by eliminating the currently unavoidable wait for pathology
diagnosis). Furthermore, with the development of minimally
invasive breast cancer therapies, such as radiofrequency abla-
tion, there is the potential for diagnosis and treatment to be
performed in a single procedure (10).

Optical techniques that have been applied to breast tissue
include fluorescence, reflectance, and Raman spectroscopies.
Fluorescence spectroscopy has been applied to ex vivo breast
tissue, and trends correlating with disease have been observed
(11–13). Fluorescence produces relatively large signals. How-
ever, the small number of endogenous fluorophores in breast
tissue and their broad spectral lineshapes are limiting factors.
There are preliminary studies using diffuse reflectance spec-
troscopy to diagnose breast lesions (14) by monitoring changes
in absorption and scattering. Combining fluorescence and dif-
fuse reflectance spectroscopies has shown promise in the breast,
as well as high sensitivity and specificity for cancer detection in
several other organ systems (15).

Raman spectroscopy can provide detailed chemical informa-
tion about a tissue sample and thus insight into the chemical
changes that accompany breast disease. In contrast to fluores-
cence, there are a large number of Raman active molecules in
breast tissue, and their spectral signatures are sharp and well
delineated. The ability to measure several different chemicals is
of particular importance in studying breast cancer because of the
heterogeneity of the disease. Although Raman spectra provide
high information content, the signals are orders of magnitude
weaker than fluorescence. However, with careful system design,
collection of clinical data in relevant times with safe laser powers
can be accomplished. For these reasons, we have investigated
Raman spectroscopy as a clinical tool for the diagnosis of a
variety of breast pathologies.

Raman spectroscopy is an inelastic scattering process in which
photons incident on a sample transfer energy to or from mo-
lecular vibrational modes (16). It is a coherent two-photon
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process in which a molecule simultaneously absorbs an incident
photon and emits a Raman photon, accompanied by its transi-
tion from one energy level to another, giving rise to a frequency
(i.e., energy) shift of the emitted photon. Because the energy
levels are unique for every molecule, Raman spectra are chem-
ical-specific. Individual bands in the Raman spectrum are char-
acteristic of specific molecular motions. Raman spectroscopy is
particularly amenable to in vivo measurements, because the
powers and excitation wavelengths that are used do not affect the
tissue and the penetration depth is relatively large (17).

Early studies based on small sample sets observed spectral
trends, indicating the promise of Raman spectroscopy for breast
cancer diagnosis (18–21). However, this initial work, which
relied on peak height ratios for data analysis, was unable to
differentiate benign lesions from malignant lesions. Given the
intended application, in which there is an a priori expectation of
nonnormal tissue, accurate distinction of benign and malignant
lesions is crucial. In view of the wealth of information available
from Raman spectroscopy and the biochemical complexity of
breast lesions, a method of analysis that utilizes the entire Raman
spectrum, rather than peak height ratios, is necessary to distin-
guish between benign and malignant lesions.

Our own initial research, based on principal component
analysis of tissue Raman spectra, showed that benign and
malignant tumors could be differentiated (22). Although prin-
cipal component analysis utilizes the entire Raman spectrum, it
affords little insight into the chemical changes responsible for
disease diagnosis. To provide information about the chemical
basis for diagnosis and understand the relationship between a
tissue’s Raman spectrum and its disease state, we developed a
spectroscopic model of breast tissue (23). This model fits mac-
roscopic tissue spectra with a linear combination of basis spectra
derived from Raman microscopy of various breast tissue mor-
phological structures. These basis spectra represent the epithe-
lial cell cytoplasm, cell nucleus, fat, �-carotene, collagen, cal-
cium hydroxyapatite, calcium oxalate dihydrate, cholesterol-like
lipid deposits, and water. This modeling approach is based on the
assumptions that the Raman spectrum of a mixture is a linear
combination of the spectra of its components and that signal
intensity and chemical concentration are linearly related (24).
The resulting fit coefficients yield the contribution of each basis
spectrum to the macroscopic tissue spectrum, thereby elucidat-
ing the chemical�morphological makeup of the lesion. These
same morphological changes are routinely used by pathologists
to diagnose disease. However, unlike conventional pathology,
which is subject to interobserver variation, Raman spectroscopy
assesses these changes in an objective, reproducible manner
without the need for tissue removal (25, 26).

Here, our Raman spectroscopic model is used to characterize
the chemical�morphological composition of a range of ex vivo
breast tissue specimens and pathologies and to predict the breast
tissue disease state. The data demonstrate the efficacy of the
model in both diagnosing breast disease and understanding the
chemical�morphological variations associated with disease pro-
gression. The results indicate that the technique has the potential
to be applied in vivo to accurately classify breast lesions, thereby
reducing the number of excisional breast biopsies that are
performed.

Materials and Methods
Tissue Preparation. Breast tissue was obtained from patients who
were undergoing surgical breast biopsy reduction mammoplas-
ties and prophylactic mastectomies. Upon removal, the samples
were snap-frozen in liquid nitrogen for storage and then pas-
sively thawed at room temperature and kept moist with PBS.
After spectral acquisition, specimens were marked with India ink
to indicate the region sampled, fixed in formalin, routinely
processed, paraffin-embedded, cut through the marked locations

in 5-�m-thick sections, and stained with hematoxylin�eosin. The
histological slides were examined by an experienced breast
pathologist who was blinded to the outcome of the Raman
spectroscopy analysis. A total of 130 spectra from 58 patients
were examined by using Raman spectroscopy: 49 normal tissues
from 25 patients (20 female, 2 male, and 3 unknown; 8 white, 12
black, and 5 unknown) with a mean age of 34.3 years (range of
13–75 years); 50 from benign lesions, 16 with fibrocystic change
from 16 patients (10 female, 1 male, and 5 unknown; 5 white, 3
black, and 8 unknown) with a mean age of 40.3 years (range of
13–75 years), 3 from lesions diagnosed as ductal epithelial
hyperplasia (DEH) from 2 white female patients with ages of 11
and 49 years, and 31 from fibroadenomas from 6 patients (4
female and 2 unknown; 2 black and 4 unknown) with a mean age
of 20.8 years (range of 13–40 years); and 31 from malignant
lesions all diagnosed as infiltrating carcinoma (10 ductal, 2
lobular, 1 ductal and lobular, and 1 mammary, not otherwise
specified) from 16 patients (8 female and 8 unknown; 5 white, 2
black, and 9 unknown) with a mean age of 57.6 years (range of
46–77 years). Patient information was not available for a sample
that was diagnosed as fat necrosis. Because multiple spectra were
collected from each patient, some tissue samples are included in
both the normal and diseased categories, depending on the
pathology underlying the exact region of data collection.

The mean ages and age ranges for the patients in this study
reflect the natural age incidence of each lesion (27). The peak
age of incidence for stromal fibroplasia, the predominant man-
ifestation of fibrocystic change encountered in this study, is in the
fourth and fifth decades (30s and 40s). That of fibroadenoma is
much earlier [the third decade (20s)], and fibroadenomas ac-
count for the majority of breast lesions requiring biopsy in that
age range. The peak age of incidence for infiltrating carcinoma
is the sixth decade (50s).

Raman Spectroscopic Measurements. Data were acquired by using
a Raman system described in refs. 28 and 29. The excitation spot
is �100 �m in diameter, and light diffusion in the tissue results
in a sampled volume of �1 mm3. Raman spectra were acquired
with a 10- to 30-s integration time, depending on signal intensity,
and a spectral resolution of 8 cm�1. The average laser excitation
power varied between 100 and 150 mW. The fluences used in this
study are safe for clinical investigations (30). No tissue damage
was observed, either grossly or upon histological review.

Data Processing. Data processing was preformed as described in
refs. 23 and 28. Model fitting was performed by using a linear
combination of basis spectra with a nonnegativity constraint.
The contribution of each basis spectrum, obtained from the
model described above, to the breast tissue specimens was
acquired by normalizing the fit coefficients (excluding water,
because it is applied exogenously) such that they sum to one. To
determine the error in our fit coefficients, we used a �2 analysis
(31). �2 analysis is a well known method for calculating the
goodness of a fit as well as the error associated with model fitting.
The error bars (one SD), shown in Fig. 3, are generated from this
analysis. The Raman spectra in each diagnostic group have
different signal-to-noise ratios; thus, mean errors are reported
for each pathology. Fitting errors for the two diagnostic model
components, fat and collagen, are 0.010 and 0.006 for normals,
0.040 and 0.022 for fibrocystic change, 0.012 and 0.006 for
fibroadenoma, and 0.034 and 0.016 for infiltrating carcinoma,
respectively. Errors are slightly larger for fat than for collagen
because the Raman spectrum of fat has more similarity to other
model components than that of collagen.

Logistic regression, a discriminate analysis technique, was
used to correlate the normalized fit coefficients with the diag-
nostic categories (32) for all combinations of the eight morpho-
logical components in the model. A likelihood ratio test was used
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to determine which fit coefficients were significant for diagnosis
and what probability thresholds, based on these fit coefficients,
correctly classified the most samples. To cross-validate our
algorithm, we used a leave-one-out cross-validation analysis,
which enabled recycling of the data to produce a more robust
diagnostic algorithm. Using maximum likelihood estimation, we
determined the probability that a breast sample is normal,
fibrocystic change, fibroadenoma, or invasive carcinoma. Re-
ceiver operating characteristic (ROC) curves were generated by
changing the probability threshold for assigning a classification.
The ROC curves in Fig. 4 display unique values of sensitivity and
specificity.

Results and Discussion
Model Fits. To understand the relationship between a tissue
sample’s Raman spectrum and its disease state, we examined the
contribution of each model basis spectrum to spectra acquired
from a variety of pathologies. Model fits to Raman spectra
acquired from normal, benign, and malignant samples of breast
tissue are shown in Fig. 1, with corresponding images from
hematoxylin�eosin-stained sections used to make the his-
topathologic diagnosis. The difference between the measured
spectrum and the model fit, the residual, is shown below each
spectrum. The lack of significant structure in the residuals

demonstrates that the model accounts for the majority of the
spectroscopic features observed and describes the data well. The
fit coefficients, also displayed in Fig. 1, represent the amount that
each model basis spectrum must be weighted to recreate the
tissue spectrum, thereby providing insight into the chemical�
morphological makeup of the tissue. Fit coefficients are a
function of both the concentration of a particular model com-
ponent and its Raman scattering cross section (which indicates
the strength of the signal at unit concentration).

Four of the 130 spectra in our data set were excluded from
diagnostic algorithm development because of an insufficient
number of samples: three from benign samples diagnosed as
DEH and one from a benign sample diagnosed as fat necrosis.
The sample diagnosed as fat necrosis exhibited an intense
fluorescent background, most likely due to lipids oxidized during
tissue necrosis that, with a larger data set, may prove to be
diagnostic of fat necrosis.

Spectral Fit Coefficients and Tissue Morphology. The fit coefficients,
given by the model and normalized to sum to one, represent
contributions of chemicals and morphological features to the
macroscopic tissue spectrum. Fig. 2 shows histograms of the
average fit coefficients for normal breast tissue, fibrocystic
change, fibroadenoma, and infiltrating carcinoma. In Fig. 2A,

Fig. 1. Model fits. Normalized Raman spectra (solid lines), model fits (dotted lines), residuals (shown below), fit coefficients, and images from hematoxylin�
eosin (H&E)-stained sections used to make the histopathologic diagnosis for normal breast tissue (A), fibrocystic change (B), fibroadenoma (C), and infiltrating
carcinoma (D). The India ink used to record the region of spectral examination is seen as a black line on the tissue surface in the H&E images. (Scale bars, 100 �m.)
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data are grouped according to pathologic diagnosis; in Fig. 2B,
data are clustered by model component. In Fig. 2B, each
histogram cluster is normalized to the largest of the four values
to highlight the relative changes between pathologies. The
one-SD confidence intervals are also displayed in Fig. 2 to
illustrate the variation in fit coefficients of a particular model
component between samples with the same pathology.

Examination of the fit coefficients for each pathology provides
insight into the chemical changes associated with breast disease.
The fit coefficients of normal breast tissue indicate that it is
primarily composed of fat. Normal breast tissue contains both
glandular and adipose tissues (33). Glandular tissue consists of
ducts lined by epithelial cells and a supportive collagenous
extracellullar matrix. Adipose tissue is primarily composed of
adipocytes (cells containing large amounts of cytoplasmic fat),
although small quantities of extracellular matrix are present.
Overall, ducts represent only a small volume of the tissue, and
thus our model accurately characterizes normal breast tissue as
predominately composed of fat with small contributions from
collagen. Contributions from fat are particularly prominent
because adipose tissue has a large Raman scattering cross section
relative to most other model components. The model does not
show a contribution from epithelial cells to normal breast tissue.
However, the lack of an epithelial cell contribution does not
mean that the normal samples do not contain epithelial cells;
rather, it means that they are not present in sufficient quantities

or with a strong enough Raman scattering cross section to
appreciably contribute to the macroscopic Raman spectrum.

The fit coefficients of the breast lesions indicate a markedly
different chemical�morphological composition than that of nor-
mal breast tissue. First, the amount of collagen increases in all
abnormal breast tissues. This finding is consistent with known
breast pathology, because lesion formation is often accompanied
by fibrosis, a scarring process characterized by an increased
stromal component, and thus by both proliferation of fibroblasts
and accumulation of collagen. The relative increase in collagen
is most pronounced in fibrocystic change, a benign condition that
can manifest itself as fibrosis, adenosis (an increase in the
number of ducts), or cyst formation (dilation of ducts with fluid).
Each of these changes can occur with or without the others. In
the fibrocystic lesions examined in the present study, increases in
the fit coefficients of the collagen, epithelial cell cytoplasm, and
cholesterol-like basis spectra replace the large contribution from
fat in normal breast tissue.

Fibroadenoma is a benign tumor of a different lineage than all
other lesions in this study (34). It is most closely related to
phylloides tumors, the malignant counterpart of which is not
carcinoma but cystosarcoma phylloides, in which the stroma,
rather than the epithelium, is malignant. Lesions diagnosed as
fibroadenoma show an increased contribution from collagen due
to fibroblast proliferation and accumulation of collagen that
results in expansion of the stroma (35). They also show an
increased contribution from both the cell nucleus and epithelial
cell cytoplasm basis spectra as a consequence of the number of
fibroblasts and epithelial cells present.

Similar to fibroadenoma, lesions diagnosed as infiltrating
carcinoma show an increased contribution from collagen, in this
case due to fibroblast proliferation in response to stromal
invasion by the malignant epithelial cells (35). The fit coefficients
of such lesions also display an increase in the amount of epithelial
cell cytoplasm and cell nucleus. Both infiltrating carcinomas and
fibroadenomas exhibit large increases in the number of cells
relative to other lesions. Enlargement of cell nuclei is a hallmark
of cancer, and thus a higher nuclear-to-cytoplasm (N�C) ratio is
a diagnostic criterion routinely used by pathologists (36, 37). In
our studies, the spectroscopic parameter characterizing the N�C
ratio is obtained by dividing the fit coefficient of the cell nucleus
basis spectrum by that of the epithelial cell cytoplasm basis
spectrum. Fibrocystic change and fibroadenoma have mean N�C
parameters of 0.01 and 0.04, respectively, whereas infiltrating
carcinoma has a much higher mean N�C parameter of 0.08.
Although clear trends are seen in the mean values, there is
significant variability of the N�C parameter within pathologies.

Further differences between lesions diagnosed as fibroade-
noma and infiltrating carcinoma exist in the amount of fat
present. Samples diagnosed as fibroadenoma have less fat than
those diagnosed as infiltrating carcinoma, as can be seen in Fig.
2, because fibroadenoma is an expansile lesion that grows by
pushing the fatty breast tissue aside. Infiltrating carcinoma, in
contrast, infiltrates in between the fat cells, so some adipocytes
are retained within the carcinoma.

Other breast pathologies are much less common and were not
represented in the study specimens. Three samples were diag-
nosed as DEH, a proliferation of the ductal epithelium that
confers an increased risk for breast cancer (38). The mean N�C
parameter of these three lesions is 0.05, intermediate between
that of normal breast and infiltrating carcinoma, indicating the
potential for detecting precancerous changes in the breast by
using Raman spectroscopy.

The histograms in Fig. 2 exhibit relatively little contribution
from the two types of calcifications found in breast tissue,
calcium hydroxyapatite and calcium oxalate dihydrate. Because
of their diagnostic importance, microcalcifications in fresh breast
tissue are not typically made available for scientific research, and

Fig. 2. Histograms displaying the average composition of samples diagnosed
as normal (white), fibrocystic change (gray), fibroadenoma (striped), and
infiltrating carcinoma (black). The one-SD confidence intervals are shown for
each model component. (A) Data are grouped according to pathological
diagnosis: fat (a), collagen (b), cell nucleus (c), epithelial cell cytoplasm (d),
calcium oxalate (e), calcium hydroxyapatite ( f), cholesterol-like (g), and �-
carotene (h). (B) Data are clustered by model component, and each histogram
cluster is normalized to the largest of the four values.
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thus our study did not include lesions containing microcalcifi-
cations. However, in a parallel study, we have shown that the
Raman spectra of microcalcifications contain significant diag-
nostic information (39). As this technique moves into a clinical
setting, microcalcifications will be encountered more frequently
and in greater abundance, which should provide additional
diagnostic information and increase diagnostic accuracy.

Diagnostic Algorithm. The fit coefficients not only provide insight
into the composition of the tissue but also are used to develop
diagnostic algorithms. A diagnostic algorithm was developed
that examines all of the data simultaneously and is, to our
knowledge, the first spectral-based algorithm to separate breast
tissues according to specific pathological diagnoses.

The fit coefficients corresponding to the fat and collagen basis
spectra were the key diagnostic parameters in differentiating
pathologies. Samples were initially divided into two groups based
on their collagen [FC(Coll)] and fat [FC(Fat)] content. One
group contained infiltrating carcinomas and fibroadenomas; the
second contained normal tissue and fibrocystic lesions. The
equation for the decision line, drawn by logistic regression, is
FC(Coll) � �0.85FC(Fat) � 0.60. The resultant two clusters
were then further subdivided by using logistic regression. Again,
the diagnostic power of all eight model components was as-
sessed. Fibrocystic change and normal tissue were separated
based on their fat and collagen contents, with the decision line
given by FC(Coll) � �0.06FC(Fat) � 0.10. Fibroadenoma and
infiltrating carcinoma were separated based solely on their fat
content. The decision line for this separation is FC(Fat) � 0.02.

Fig. 3 displays a scatter plot of FC(Coll) and FC(Fat) for all
pathologies encountered in this study, as well as the decision
lines that separate samples according to diagnoses. Table 1

compares the pathologic diagnosis with that of the Raman
diagnostic algorithm for our data set. The algorithm yields a
sensitivity of 94% (29�31), specificity of 96% (91�95), and
overall accuracy of 86% (108�126) for detecting infiltrating
carcinoma. Also shown in Fig. 3 are the fat and collagen fit
coefficients for the three samples diagnosed as DEH. In future
applications, this diagnostic algorithm could be used in a pro-
spective manner, and the fit coefficients of collagen and fat
simply plotted to determine where they fall in the diagnostic
plane.

Fig. 4 displays a ROC curve that illustrates the ability of
Raman spectroscopy to separate lesions diagnosed as infiltrating
carcinoma from benign and normal breast tissues. A ROC curve
illustrates the tradeoff between sensitivity and specificity by
plotting the true-positive rate against the false-positive rate for
the different possible probability thresholds of a diagnostic test.
The closer the curve comes to the 45-degree diagonal, shown as
a dashed line, the less accurate the diagnostic test. The ROC
curve clearly illustrates the ability of Raman spectroscopy to
accurately diagnose breast cancer and demonstrates how the
diagnostic scheme can be adjusted to obtain the desired degree
of sensitivity at the cost of specificity.

Effect of Age on the Diagnostic Algorithm. The female breast
undergoes substantial biochemical alterations at menopause. Spe-
cifically, a large amount of collagen is replaced by fat, resulting in
breast tissue that is less dense on mammography. Because our
diagnostic algorithm is based on fat and collagen content as assessed
by Raman spectroscopy, we investigated trends in these two pa-
rameters as a function of patient age. It is notable that although the
normal samples span a wide age range, our technique characterizes
them as predominately composed of fat because the Raman
scattering cross section is much higher for fat than for collagen.
Thus, we observe significant contributions from collagen only when

Fig. 3. Scatter plot displaying the fat and collagen content for all patholo-
gies encountered in this study. Error bars (one SD) are indicated. Several of the
error bars are smaller than the symbols used to denote each data point.
Normal, gray stars; fibrocystic change, diamonds; fibroadenoma, triangles;
infiltrating carcinoma, squares; DEH, white stars.

Table 1. Comparison of the pathologic diagnosis with that of the Raman diagnostic algorithm

Raman diagnosis

Pathology diagnosis

Normal
(49 spectra)

Fibrocystic change
(31 spectra)

Fibroadenoma
(15 spectra)

Infiltrating carcinoma
(31 spectra)

Normal 45 1 0 0
Fibrocystic change 4 22 0 0
Fibroadenoma 0 7 12 2
Infiltrating carcinoma 0 1 3 29

Fig. 4. ROC curves illustrating the ability of Raman spectroscopy to separate
lesions diagnosed as infiltrating carcinoma from benign and normal breast
tissues. The ROC curve of two indistinguishable populations, represented by
the dashed line, is included for comparison.
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it is present in large quantities (for instance, in the setting of dense
stromal fibrosis). To rigorously confirm that our diagnostic algo-
rithm is not influenced by patient age, we examined the correlation
between the spectroscopic parameter characterizing the fat-to-
collagen ratio, obtained by dividing FC(Fat) by FC(Coll), and age.
Fibroadenoma was excluded from this analysis because it is a
juvenile disease and has a much different age range than the other
pathologies in our study (27). We found a correlation coefficient of
�0.140 for the spectroscopic parameter characterizing the fat-to-
collagen ratio and age. We also examined the relationship between
the fat-to-collagen ratio and age within individual pathologies,
obtaining correlation coefficients of �0.104, 0.137, and �0.025 for
invasive carcinoma, fibrocystic change, and normals, respectively.
Thus, we do not observe age-dependent trends in the fat and
collagen contents of our data. Our results indicate that Raman
spectroscopy is much less sensitive to breast density and meno-
pausal status than many other optical techniques.

Implications. We have demonstrated the ability of Raman spec-
troscopy to diagnose benign and malignant breast lesions with
high sensitivity and specificity ex vivo in a laboratory setting.
These diagnoses are based on chemical�morphological changes
that are known to accompany breast disease. These excellent
ex vivo results are a necessary step toward data acquisition in
hospital settings, both ex vivo directly following biopsy and in vivo
during breast surgery. These preclinical and clinical studies are
made possible by the recent development of a Raman optical
fiber probe designed for medical applications (40). The probe is
optimized to collect high signal-to-noise ratio data from tissue in
clinically relevant times (1 s).

This work was supported by National Institutes of Health Grants
RR02594 and HL51265 and Pathology Associates of University Hospi-
tals, Cleveland.
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